

General Certificate of Education Advanced Level Examination
June 2012

Mathematics

Unit Further Pure 3

Thursday 14 June 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1
The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\sqrt{(2 x)}+\sqrt{y}
$$

and

$$
y(2)=9
$$

Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.25$, to obtain an approximation to $y(2.25)$, giving your answer to two decimal places.

2 (a) Write down the expansion of $\sin 2 x$ in ascending powers of x up to and including the term in x^{5}.
(b) Show that, for some value of k,

$$
\lim _{x \rightarrow 0}\left[\frac{2 x-\sin 2 x}{x^{2} \ln (1+k x)}\right]=16
$$

and state this value of k.

3 The diagram shows a sketch of a curve C, the pole O and the initial line.

The polar equation of C is

$$
r=2 \sqrt{1+\tan \theta}, \quad-\frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{4}
$$

Show that the area of the shaded region, bounded by the curve C and the initial line, is $\frac{\pi}{2}-\ln 2$.

4 (a) By using an integrating factor, find the general solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{4}{2 x+1} y=4(2 x+1)^{5}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
(b) The gradient of a curve at any point (x, y) on the curve is given by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4(2 x+1)^{5}-\frac{4}{2 x+1} y
$$

The point whose x-coordinate is zero is a stationary point of the curve. Using your answer to part (a), find the equation of the curve.

5 (a) Find $\int x^{2} \mathrm{e}^{-x} \mathrm{~d} x$.
(4 marks)
(b) Hence evaluate $\int_{0}^{\infty} x^{2} \mathrm{e}^{-x} \mathrm{~d} x$, showing the limiting process used.

6 It is given that $y=\ln (1+\sin x)$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\mathrm{e}^{-y}$.
(c) Express $\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}$ in terms of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and e^{-y}.
(d) Hence, by using Maclaurin's theorem, find the first four non-zero terms in the expansion, in ascending powers of x, of $\ln (1+\sin x)$.

7 (a) Show that the substitution $x=\mathrm{e}^{t}$ transforms the differential equation

$$
\begin{gathered}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=3+20 \sin (\ln x) \\
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=3+20 \sin t
\end{gathered}
$$

(7 marks)
(b) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=3+20 \sin t \tag{11marks}
\end{equation*}
$$

(c) Write down the general solution of the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=3+20 \sin (\ln x) \tag{lmark}
\end{equation*}
$$

8 (a) A curve has cartesian equation $x y=8$. Show that the polar equation of the curve is $r^{2}=16 \operatorname{cosec} 2 \theta$.
(b) The diagram shows a sketch of the curve, C, whose polar equation is

$$
r^{2}=16 \operatorname{cosec} 2 \theta, \quad 0<\theta<\frac{\pi}{2}
$$

(i) Find the polar coordinates of the point N which lies on the curve C and is closest to the pole O.
(ii) The circle whose polar equation is $r=4 \sqrt{2}$ intersects the curve C at the points P and Q. Find, in an exact form, the polar coordinates of P and Q.
(iii) The obtuse angle $P N Q$ is α radians. Find the value of α, giving your answer to three significant figures.

